34 research outputs found

    Acute Cardiovascular Effects of Controlled Exposure to Dilute Petrodiesel and Biodiesel Exhaust in Healthy Volunteers: A Crossover Study

    Get PDF
    Abstract Background Air pollution derived from combustion is associated with considerable cardiorespiratory morbidity and mortality in addition to environmental effects. Replacing petrodiesel with biodiesel may have ecological benefits, but impacts on human health remain unquantified. The objective was to compare acute cardiovascular effects of blended and pure biodiesel exhaust exposure against known adverse effects of petrodiesel exhaust (PDE) exposure in human subjects. In two randomized controlled double-blind crossover studies, healthy volunteers were exposed to PDE or biodiesel exhaust for one hour. In study one, 16 subjects were exposed, on separate occasions, to PDE and 30% rapeseed methyl ester biodiesel blend (RME30) exhaust, aiming at PM10 300 μg/m3. In study two, 19 male subjects were separately exposed to PDE and exhaust from a 100% RME fuel (RME100) using similar engine load and exhaust dilution. Generated exhaust was analyzed for physicochemical composition and oxidative potential. Following exposure, vascular endothelial function was assessed using forearm venous occlusion plethysmography and ex vivo thrombus formation was assessed using a Badimon chamber model of acute arterial injury. Biomarkers of inflammation, platelet activation and fibrinolysis were measured in the blood. Results In study 1, PDE and RME30 exposures were at comparable PM levels (314 ± 27 μg/m3; (PM10 ± SD) and 309 ± 30 μg/m3 respectively), whereas in study 2, the PDE exposure concentrations remained similar (310 ± 34 μg/m3), but RME100 levels were lower in PM (165 ± 16 μg/m3) and PAHs, but higher in particle number concentration. Compared to PDE, PM from RME had less oxidative potential. Forearm infusion of the vasodilators acetylcholine, bradykinin, sodium nitroprusside and verapamil resulted in dose-dependent increases in blood flow after all exposures. Vasodilatation and ex vivo thrombus formation were similar following exposure to exhaust from petrodiesel and the two biodiesel formulations (RME30 and RME100). There were no significant differences in blood biomarkers or exhaled nitric oxide levels between exposures. Conclusions Despite differences in PM composition and particle reactivity, controlled exposure to biodiesel exhaust was associated with similar cardiovascular effects to PDE. We suggest that the potential adverse health effects of biodiesel fuel emissions should be taken into account when evaluating future fuel policies. Trial registration ClinicalTrials.gov, NCT01337882 /NCT01883466. Date of first enrollment March 11, 2011, registered April 19, 2011, i.e. retrospectively registered

    Controlled Exposures to Air Pollutants and Risk of Cardiac Arrhythmia

    Get PDF
    BACKGROUND: Epidemiological studies have reported associations between air pollution exposure and increases in cardiovascular morbidity and mortality. Exposure to air pollutants can influence cardiac autonomic tone and reduce heart rate variability, and may increase the risk of cardiac arrhythmias, particularly in susceptible patient groups. OBJECTIVES: We investigated the incidence of cardiac arrhythmias during and after controlled exposure to air pollutants in healthy volunteers and patients with coronary heart disease. METHODS: We analyzed data from 13 double-blind randomized crossover studies including 282 participants (140 healthy volunteers and 142 patients with stable coronary heart disease) from whom continuous electrocardiograms were available. The incidence of cardiac arrhythmias was recorded for each exposure and study population. RESULTS: There were no increases in any cardiac arrhythmia during or after exposure to dilute diesel exhaust, wood smoke, ozone, concentrated ambient particles, engineered carbon nanoparticles, or high ambient levels of air pollution in either healthy volunteers or patients with coronary heart disease. CONCLUSIONS: Acute controlled exposure to air pollutants did not increase the short-term risk of arrhythmia in participants. Research employing these techniques remains crucial in identifying the important pathophysiological pathways involved in the adverse effects of air pollution, and is vital to inform environmental and public health policy decisions

    Photocatalytic Decomposition of Formic Acid on Mo2C-Containing Catalyst

    Get PDF
    Soluble components in the peripheral blood from experimental exposure of 14 healthy subjects to filtered air and wood smoke. Samples were collected before (pre), at 24 h and 44 h after exposure, to air and wood smoke. Data are given as medians with interquartile range. (DOCX 62 kb

    Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters

    Get PDF
    Background: Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. Methods: In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m3 particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4–6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Results: Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P &lt; 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P &gt; 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P &lt; 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P &gt; 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P &gt; 0.05 for all). Conclusions: Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.Originally included in thesis in manuscript form.</p

    Brief exposure to Swedish snus causes divergent vascular responses in healthy male and female volunteers

    No full text
    Introduction: The use of Swedish oral moist snuff, known as snus, has for a long time been limited to the Scandinavian countries. With declining cigarette sales in the western world, tobacco companies have looked to the development of alternative tobacco products. In 2006 snus products were launched in the US. Even though several studies have demonstrated negative health effects, snus is often depicted as harmless. The aim of the present study was to investigate acute vascular effects of snus as measured by arterial stiffness as well as blood pressure and heart rate. Methods: Two separate randomized double-blind crossover studies with the same study design were pooled for analysis. Twenty-nine healthy snus-users (17 females, 12 males) were included. Snus (Göteborgs Rapé) and tobacco free snus (Onico) were administered in a randomized order at two separate visits. Arterial stiffness, blood pressure and heart rate were measured at baseline as well as every five minutes for 40 minutes during exposure. Following snus removal, measurements continued for 30 minutes post exposure. Arterial stiffness was measured using pulse wave velocity (Vicorder) and pulse wave analysis (Sphygmocor). Results: Compared to placebo, snus significantly increased systolic and diastolic blood pressure as well as heart rate, however, only in females (p = 0.004, p = 0.006 and p&lt;0.001 respectively). No changes were seen in arterial stiffness measurements in either gender. Conclusion: We observed an increase in blood pressure and heart rate only in females, but not in males due to snus usage as compared to placebo. This novel finding was surprising and needs to be further investigated considering most of the earlier studies have mainly focused on male snus users and the increasing usage of snus among females

    Acute Effects of Electronic Cigarette Inhalation on the Vasculature and the Conducting Airways

    No full text
    The use of electronic cigarettes has increased exponentially since its introduction onto the global market in 2006. However, short- and long-term health effects remain largely unknown due to the novelty of this product. The present study examines the acute effects of e-cigarette aerosol inhalation, with and without nicotine, on vascular and pulmonary function in healthy volunteers. Seventeen healthy subjects inhaled electronic cigarette aerosol with and without nicotine on two separate occasions in a double-blinded crossover fashion. Blood pressure, heart rate, and arterial stiffness measured by pulse wave velocity and pulse wave analysis were assessed at baseline, and then at 0 h, 2 h, and 4 h following exposure. Dynamic spirometry and impulse oscillometry were measured following vascular assessments at these time points, as well as at 6 h following exposure. e-Cigarette aerosol with nicotine caused a significant increase in heart rate and arterial stiffness. Furthermore, e-cigarette aerosol-containing nicotine caused a sudden increase in flow resistance as measured by impulse oscillometry, indicating obstruction of the conducting airways. Both aerosols caused an increase in blood pressure. The present study indicates that inhaled e-cigarette aerosol with nicotine has an acute impact on vascular and pulmonary function. Thus, chronic usage may lead to long-term adverse health effects. Further investigation is warranted

    Electronic cigarettes containing nicotine increase endothelial and platelet derived extracellular vesicles in healthy volunteers

    No full text
    BACKGROUND AND AIMS: E-cigarette use is increasingly common. Whether e-cigarettes are harmful to human health is an intensely debated subject. In order to investigate whether e-cigarettes with and without nicotine cause different vascular responses, we obtained blood samples from healthy young volunteers who performed brief active e-cigarette inhalations. Extracellular vesicles (EVs) of endothelial and platelet origin were measured to determine vascular changes. METHODS: Using a randomized, double-blind, crossover design, 17 healthy occasional smokers inhaled 30 puffs of e-cigarette vapor during 30 min. Blood samples were collected at baseline, as well as at 0, 2, 4 and 6 h post-exposure. EVs from platelets and endothelial cells were measured by flow cytometry. RESULTS: Platelet and endothelial derived EVs were significantly increased with peak levels seen at 4 h following exposure to active inhalation of e-cigarette vapor with nicotine. Moreover, platelet derived EVs, expressing platelet activation marker P-selectin and the inflammation marker, CD40 ligand, were also significantly increased following inhalation of e-cigarette vapor with nicotine. In addition, platelet derived EVs expressing CD40 ligand was increased after inhalation of e-cigarette vapor without nicotine. CONCLUSION: As few as 30 puffs of nicotine-containing e-cigarette vapor caused an increase in levels of circulating EVs of endothelial and platelet origin, which may signify underlying vascular changes. Although e-cigarette vapor without nicotine caused an increase in platelet EVs expressing CD40 ligand, nicotine, as a component in the vapor, seems to have a more compelling effect on extracellular vesicle formation and protein composition

    The Effects of Smoking on Levels of Endothelial Progenitor Cells and Microparticles in the Blood of Healthy Volunteers

    Get PDF
    Background: Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs) and circulating microparticles (MPs) following the smoking of one cigarette by young, healthy intermittent smokers. Materials and Methods: 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. Results: Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial-and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet-and leukocyte origin). CD144 (VE-cadherin) or HMGB1 release did not significantly change during active smoking. Conclusion: Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall
    corecore